AM160 HW1 Problem?2

Arjun Dhamrait
February 2025

My Colab containing code is here.

A Noisy Derivatives

When trying to learn from noisy derivative data, unfortunately there is some
error that we cannot learn past. We can see from the gollowing that as we
increase the variance of the noise, the error of the learned physics (12 norm of
the difference between the learned coefficients of the polynomial and the actual
coefficients), increases. This is regardless of the maximum polynomial term of

the derivative and the maximum number of iterations.

Absolute error vs polynomial order Absolute error vs maximum iteration count

Ne—1

—— variance=0
variance=0.1

—— variance=0.5

—— variance=1

absolute error

10744

absolute error

—— variance=0
1075 4

| —— variance=1

10-10 variance=0.1
—— variance=0.5

T emetoer T Nt
Interestingly, most commonly when the derivatives aren’t exact we seem
to learn that there are linear terms in the z-components. (The model learns
% = zy + Bz — 1 instead of % = zy + Bz) I have no clue why this is... maybe
the error is linearly added has something to do with it? Honestly that doesn’t
seem like a correct answer, so I am not sure.

B Calculating Derivatives

When we have noiseless data, we can calculate derivatives instead of computing
them from our functions. This would be useful if we did not actually know the
underlying physics of our simulations. I tried 2 different methods to compute
derivatives.

30


https://colab.research.google.com/drive/1VevWiueIaFwCuhRWdMGECxNinseyhuld?usp=sharing

B.1 Finite Difference

Computing the derivatives with finite difference methods actually proved to
be pretty OK! Using forward differences, we can see that the physics is just
about perfectly learned, with the addition of that +1 term on the z component
just like the noisy derivative section above. Again, I have no clue why this
happens... Everything else, however, looks just about correct within a small
range of error. Something to note here is that both forward differences, reverse
differences, and midpoint differences produced about the same learned physics,
which makes sense because in the grand scheme of things with 10000 data points
the derivatives calculated through these three methods are just about the same
(dt is so small).

B.2 Cubic Spline

I also fit a cubic spline to the data points and computed the derivatives through
that. To do this, I used Scipy’s handy Cubic Spline interpolation function,
which has a built-in derivative calculation. I'm not sure the complexity of this,
but if ’'m not mistaken it should be somewhere around O(4?n) because at each
point we have to interpolate a cubic spline, which is an O(4?) operation. So
really this is also pretty efficient, though it did take considerably longer than the
finite difference methods used in the previous subsections (showing algorithmic
complexity doesn’t really paint the whole picture of how long an algorithm is
going to take, even when we have very large n). This method of computing
derivatives gave us perfectly learned physics! That’s pretty impressive from an
O(n) algorithm for computing derivatives.

B.3 Failed attempt: Gaussian process interpolation

In addition to those two methods, I tried to use a Gaussian Process to fit the
entire data set smoothly and give me a derivative. I've left the code in my Colab,
however unfortunately with this problem size I was running out of memory! I'm
thinking just the idea of inverting a 10000x10000 matrix made the Colab servers
cry... It might be useful to try and stencil the Gaussian Process, that way we
don’t have huge matrices trying to invert, however I have a feeling that would
be just about the same as using polynomial splines in the long run. Because the
cubic spline technique worked so well, I'm not inclined to try this out because
at best it would be higher time complexity.



	Noisy Derivatives
	Calculating Derivatives
	Finite Difference
	Cubic Spline
	Failed attempt: Gaussian process interpolation


