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All code for this assignment can be found |here

a Training the neural net

Following the procedure in class (and the sample code given in Canvas), I trained
a neural net with a linear input layer going from 8 to 128 features, 3 hidden
linear layers of 128 features each, and a linear output layer going from 128 to
64 features. This neural net was trained on 10,000 training inputs.

The loss is as expected:
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We can see for a test point, the neural net does pretty OK:


https://colab.research.google.com/drive/1fJYKeSB4xZHl7WCLRInFd7VNsqv0z-UU?usp=sharing
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And its SGS is reasonable.

Comparison of True and Predicted subgrid-scale forcing
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b Fine tuning for different physics

As expected, trying to use this neural net to predict physics of a different prob-
lem does slightly better than random, but still not the best.
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So I train the network on the new physics data and get some slightly better
results:
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c Simulating using original model

This was pretty hard. The method I used to increment x is newton’s method
using the output of the neural net to compute X;Yy:

he

55 (M1 (X))

X" = X'+ dt[ X ((Xfey — Xfepo) — Xje + F +
and normalizing after to compare to the Comparing the Oth entry of the X vector
and Y vector, we see that the X vector is starts off pretty accurate, capturing
the physics pretty well. Also the Y starts off decently well as well. After a short
time, however, the solution diverges pretty considerably.
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Comparing the mean values of the X and Y vectors, we see similar results:
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Finally, plotting the mean values of X vs Y, the physics is pretty strange:
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I would say for this model we are accurate to about 250 timesteps (around
12 seconds), after which the model diverges pretty considerably. In fact, if you
look at the mean x-y plot of the first 250 timesteps, and squint really hard, it
almost looks like the same thing!
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If T were to try and make this better, I would try to use an RK4 step instead of
a Euler step.
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