AM160 HW2 Problem1

Arjun Dhamrait

February 2025

All code for this assignment can be found |here

a Training the neural net

Following the procedure in class (and the sample code given in Canvas), I trained
a neural net with a linear input layer going from 8 to 128 features, 3 hidden
linear layers of 128 features each, and a linear output layer going from 128 to
64 features. This neural net was trained on 10,000 training inputs.

The loss is as expected:

Loss curve
054 \\ — — Predicted 5GS
"‘"--..__
.
@ 0.4+ "‘-.‘,__H
| —
= "‘--.__
0.3_ ""‘l-..__-
0.2 e ———
T T T T T T
0 20 40 60 80 100
epochs

We can see for a test point, the neural net does pretty OK:

https://colab.research.google.com/drive/1fJYKeSB4xZHl7WCLRInFd7VNsqv0z-UU?usp=sharing

Comparison of True and Predicted Y(t)

5 | = True Y(t)
== Predicted Y(t) -
" [~/ %
= - -
0 - 1

g L J

21 T T T T T T

0 10 20 30 40 50 60

Dimension of Y

And its SGS is reasonable.

Comparison of True and Predicted subgrid-scale forcing

10 1 I~
! ~

Value

m— True SG5
—10 4 == Predicted 5GS
T T

T T T
0 1 2 3 4 5 6 7

Dimension of ¥

b Fine tuning for different physics

As expected, trying to use this neural net to predict physics of a different prob-
lem does slightly better than random, but still not the best.

Comparison of True and Predicted Y(t)

P True Y(t)
— = Predicted Y(t)

value
o
!

T T T y v T
0 10 20 30 40 50 60
Dimension of Y

Comparison of True and Predicted subgrid-scale forcing

10 4
\
\
AN
— True SGS
P

1 —— Predicted sGs
5

Value
o

T T T T
2 3 4 5
Dimension of ¥

So I train the network on the new physics data and get some slightly better
results:

Comparison of True and Predicted Y(t)

] — True Y(t) A
Predicted Y(t)
= A
1y | : |
6 1‘0 Zb 30 y éﬂ

N

Value
o

40 50
Dimension of Y

Comparison of True and Predicted subgrid-scale forcing

-
A -~
o4 — True SGS
predicted SGS
T T T T T T
1 2 3 4 5 6

value

T
[} 7

Dimension of Y

c Simulating using original model

This was pretty hard. The method I used to increment x is newton’s method
using the output of the neural net to compute X;Yy:

he

55 (M1 (X))

X" = X'+ dt[X ((Xfey — Xfepo) — Xje + F +
and normalizing after to compare to the Comparing the Oth entry of the X vector
and Y vector, we see that the X vector is starts off pretty accurate, capturing
the physics pretty well. Also the Y starts off decently well as well. After a short
time, however, the solution diverges pretty considerably.

20

10 ~

_1{] .

= True X[0]
= = Predicted X[0]

T T T
750 1000 1250

T T T
1500 1750 2000

1.0 ~

0.5 A

0.0

_05 -

—=1.0 A

— True Y[0]
- = Predicted Y[0]

T
230

T
300

T T T
750 1000 1250

T T T
1500 1750 2000

Comparing the mean values of the X and Y vectors, we see similar results:

_0.1 -

_0.2 -

— True X_mean
Y — = Predicted X_mean

0 250 500 750 1000 1250 1500 1750 2000

0.2 4

0.1

0.0

— True Y_mean
== Predicted Y_mean

0 250 500 750 1000 1250 1500 1750 2000

Finally, plotting the mean values of X vs Y, the physics is pretty strange:

Y-mean

0.2 1

0.1 4

0.0 7

—-0.1 1

—0.2

— Actual mean plot
—— Simulated mean plot

Pt P
X "Wj'ﬁ’-“-‘
CREAT

QY *, 7z

—

I would say for this model we are accurate to about 250 timesteps (around
12 seconds), after which the model diverges pretty considerably. In fact, if you
look at the mean x-y plot of the first 250 timesteps, and squint really hard, it
almost looks like the same thing!

0.2 1 — Actual mean plot
—— Simulated mean plot
0.1
s
o 0.0
£
>
-0.1 1
-0.2 1
T T T T T T T
0 1 2 3 4 5 6
X-mean

If T were to try and make this better, I would try to use an RK4 step instead of
a Euler step.

	Training the neural net
	Fine tuning for different physics
	Simulating using original model

