
Optimal Gaussian Process Kernel Choice

Arjun Dhamrait

November 2024

Abstract

The objective of this project was to use Gradient Descent to choose the
optimal kernel function for a Gaussian Process. When approximating a
sinusoidal function, The optimized kernel function weights obtained from
maximizing the log-likelihood of the Gaussian Process correctly weighed
the periodic kernel function considerably more than the other kernel func-
tions. This choice of kernel function additionally allowed the model to
predict unseen data very accurately.

1 Introduction

1.1 Background

Gaussian Process Regression attempts to predict function values of a function
that isn’t known. It does this by using kernel functions that describe how
correlated two different input training values are, then using those correlations
it correlates test inputs to those same values using the same kernels and outputs
the expected value of those test inputs. If the underlying function is linear, a
linear kernel function would be best, r, if the underlying function were sinusoidal,
a periodic kernel function would be best, etc. however what kernel function
should be used when we don’t actually know the underlying shape of our data?
This project, I will choose the appropriate kernel function(s) that maximizes
the log likelihood of the Gaussian process to output the training data, the test
it on some test data and see how close it got!

1.2 A Simple Gaussian Process

To start off, assume I have been given n training points x, their training values
y, and some test points x∗:

x =


x1

x2

...
xn

 ,y = f(x) + ϵ,x∗ =


x∗
1

x∗
2
...

x∗
m



1

where ϵ is some random noise added to the function values and f is the function
we want to learn using the gaussian process. For a simple Gaussian Process,
one can compute a kernel matrix K where each of its values are computed from
the kernel function:

Kij = k(xi, xj)

A simple kernel function, the linear kernel function, looks like the following:

k(xi, xj) = α1xixj +α2

where α1 and α2 are the kernel function’s hyperparameters. More kernel func-
tions can be found here [1]. Importantly, kernel functions have the following
properties:

1. k(xi, xj) ≥ 0

2. k(xi, xj) = k(xj , xi)

From these properties, it’s clear that K ∈ Sn
+.

1.3 Predicting using a Gaussian Process

A Gaussian Process assumes the training outputs y and test outputs y∗ have a
joint distribution whose prior is[

y
y∗

]
∼ N (0,

[
K + σ2

nI K∗

K∗T K∗∗

]
)

where K∗
i,j = k(x∗

i , xj) is the covariance matrix of the test points and the
training points, and K∗∗

i,j = k(x∗
i ,x

∗
i) is the covariance matrix of the test points,

and σn is the the signal noise. To find the predicted output of the Gaussian
Process, we can find the mean function of the y∗, which is the following:

y∗ = K∗(K + σ2
nI)

−1y

σn for our purposes will be hand picked.

1.4 Choosing a kernel function

Choosing the kernel function depends on the actual underlying shape of the
function learned. If the function is periodic, for example, a periodic kernel
function will provide better results, and if a function is linear a linear kernel
function will give us better results. I want to find the kernel function that is
most likely to give us the most accurate approximation. To set this up, assume
I am given p different kernel functions ki. Define the composite kernel function
k as a linear combination of those kernel functions:

k(xi, xj) = θ1k1(xi, xj) + · · ·+ θpkp(xi, xj)

2

https://www.cs.toronto.edu/~duvenaud/cookbook/

where θi > 0. The composite kernel matrix K will be equal to the weighted
sums of each individual kernel matrix Ki:

K = θ1K1 + · · ·+ θpKp

Because K is a linear combination of the individual kernel matrices Ki ∈ Sn
+

and the weights are all positive, K ∈ Sn
+ (I think this was a homework problem

at the start of the quarter...).
In vector form, our kernel matrix looks like this:

K = θTK

where K = [K1, . . . ,Kp] a vector of the kernel matrices used and θ = [θi, . . . , θp]
is the the weight of that matrix. Our conditions on θ are

θi > 0 ∀ i ∈ 1, . . . , p

1.5 Likelihood

The goal is to maximize the likelihood that the training values y are observed
from the training values x using the Gaussian Process. it is known that y ∼
N (0,K + σ2

nI) [2], and therefore the marginal likelihood is:

p(y|x) = 1

(2π)n/2
|K + σ2

nI|
1
2 exp(−1/2yT (K + σ2

, I)
−1y)

and the log likelihood is

log p(y|x) = −1

2
(n log(2π) + log |K + σ2

nI|+ yT (K + σ2
nI)

−1y)

replacingK with θTK. Convincing CVXPY that this function is indeed concave
may be a bit tricky, but this seems like a good time to use Gradient Descent!

2 Methods

2.1 Problem setup

Turning this into a minimization problem and removing constants, the convex
optimization problem is as follows:

min
θ

log |θTK + σ2
nI|+ yT (θTK + σ2

nI)
−1y

s.t. θi >= 0 ∀ i ∈ 1 . . . p

where p is the number of kernel functions, K = [K1, . . . ,Kp] is the vector of the
kernels matrices Ki ∈ Sn

++, θ = [θi, . . . , θp] is the the weights of those matrices.
σm is the standard deviation of signal noise, chosen to be a value of 0.1. y
is our noisy input. It is clear that the objective function is the log likelihood
function from above with the constant removed and the values scaled so it is a
minimization problem instead of a maximization problem.

3

2.2 Approach

To find the optimal value of θ, Grwadient Descent will be used. A learning rate
of 1e− 2 and a cutoff of 1e− 2, seemed to finish gradient descent in the range
of 1000 iterations in around 30 seconds, which was appropriate for my free use
of Google Colab.

To generate input data y, random gaussian noise with a standard deviation
of 0.1 was added to the simple function of x ∈ [0, 1]:

yi = f(xi) + ϵ = sin(20πxi) + ϵ

The underlying function was sinusoidal with a period of 0.1.
Choosing kernel functions is a bit more nuanced. The most common kernel

functions were as follows:

k1 = krq(x1, x2) = (1 +
(x1 − x2)

2

2.2 ∗ 0.01
)−1.1

k2 = kl(x1, x2) = 1/2 + (x1 − 1)(x2 − 1)

k3 = kp(x1, x2) = exp(
−2 sin(π |x1−x2|

0.2)

0.02
)

k4 = kse(x1, x2) = exp(
−2(x1 − x2)

2

0.02
)

which were taken from here [1]. as some of the most popular kernel functions.
The hyperparameters of these kernel may have also been able to be optimized
using Gradient Descent, however that is out of the scope of this final report so I
just chose values that made sense to me. An important thing to note is that the
periodic kernel’s period hyperparameter is equal to our input function’s. From
these kernel functions, the corresponding kernel matrices Ki were assembled.

3 Results

The results were great! The ultimate theta chosen for the input function heavily
favors the periodic function, as expected:

θopt = [1.74974111, 4.76193398, 16.53755544, 1.83998171]

From graphing the objective function versus the iteration number, we can def-
initely see it converging on an optimal solution 1. Looking at the Gaussian
Process interpolating the function, it looks very close to the truth2 and the
error is fairly low 3. Additionally, even once extrapolated to values it never
trained near it approximates pretty well! 4

4 Discussion

The results obtained were very good. The optimized theta clearly favored the
periodic kernel function almost 16x as strongly as it favored the the other kernel

4

https://www.cs.toronto.edu/~duvenaud/cookbook/

Figure 1: The objective function rapidly decreases, and flattens out as it get
closer to an optimal theta

Figure 2: The predicted values of the function y∗ compared to the input y and
the actual function f

Figure 3: The absolute error of the approximation

5

Figure 4: Extrapolation of function

function, except for the linear kernel function. If I were to guess, this is probably
because the function sin(x) almost looks like a line if you look at it from afar,
so a line with the function y = 0 would be a rough approximation. Looking at
the errors, the error seems to spike near where the function changes the most.
This error is most likely coming from the small squared-exponential and rational
quadratic function dependence, which tends to approximate smooth functions
the best.

Further studies of model choice can go down many routes. In this project,
I manually chose hyperparameter values of the kernel functions, however those
can also be optimized often with convex optimization methods like gradient
descent. Additionally, one could use gradient descent to find the noise value ,
instead of manual input like I used. Of course, one could also use the exact
same methods I used to approximate different functions.

6

5 Supporting Information

This code was run on a colab here.

import numpy as np

import cvxpy as cp

import matplotlib.pyplot as plt

from ipywidgets import IntProgress

from IPython.display import display

n = 64

sigma = 0.1

f = lambda x: np.sin(x*10*np.pi)

f = lambda x: x - 1/2

X = np.linspace(0, 1, n)

Y = np.vectorize(lambda x: f(x) + np.random.normal(0, sigma))(X)

l = 0.1

kernels = [

lambda x1, x2: (1 + (x1 - x2)**2/(2*1.1)*(l**2))**(-1.1), # Rational Quadratic kernel, l=dx, a=4

lambda x1, x2: 1/2+(x1-1)*(x2-1), # Linear kernel, y-intercept = 1/2, x-intercept = 1

lambda x1, x2: np.exp(-2*np.sin(np.pi*abs(x1-x2)/0.2)**2*l**2), # Pereodic kernel, l=dx1, p=0.2

lambda x1, x2: np.exp(-(x1-x2)**2 * l**2), # Squared exponential kernel, l=dx

]

noise = np.eye(n) * sigma**2

K = np.array([np.array([[kernel(x1, x2) for x1 in X] for x2 in X]) for kernel in kernels])

K_tot = lambda theta: np.sum([theta[i] * K[i] for i in range(len(theta))], axis=0) + noise

objective_function = lambda theta: np.log(np.linalg.det(K_tot(theta))) + Y.T @ np.linalg.inv(K_tot(theta)) @ Y

gradient_function = lambda theta: np.array([np.trace(np.linalg.inv(K_tot(theta)) @ K_t) + Y.T @ (np.linalg.inv(K_tot(theta)) @ K_t @ np.linalg.inv(K_tot(theta)))@ Y for K_t in K])

Gradient descent

iterations = 1000

close_enough = 1e-6

learning_rate = 1e-2

prog = IntProgress(min=0, max=iterations)

display(prog)

obj = []

theta = np.ones(len(K))

for _ in range(iterations):

prog.value += 1

theta_old = theta

theta = theta + learning_rate * gradient_function(theta)[:len(theta)]

7

https://colab.research.google.com/drive/14ao1JZ8zkZu0ISJPqyOeNjBAeQOuzmb3?usp=sharing

Projection

theta[theta < 0] = 0

obj.append(objective_function(theta))

print(theta_old, theta, objective_function(theta), gradient_function(theta))

if abs(objective_function(theta) - objective_function(theta_old)) < close_enough:

break

print("done :)")

print(theta)

References

[1] David Kristjanson Duvenaud. Automatic Model Construction with Gaussian
Processes. PhD thesis, University of Cambridge, 2014.

[2] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes
for Machine Learning. The MIT Press, 2006.

8

	Introduction
	Background
	A Simple Gaussian Process
	Predicting using a Gaussian Process
	Choosing a kernel function
	Likelihood

	Methods
	Problem setup
	Approach

	Results
	Discussion
	Supporting Information

